Enhanced Control for a Lower Limb Prosthesis using High-Density Surface Electromyography

Mojtaba Mohasel1, Corey Pew1
1Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT
Email:Corey.Pew@montana.edu
Limb Loss

- Limb loss is a major form of disability currently affecting 2 million Americans, with 159,000 new lower limb amputees each year.

- Rehabilitation goal is to restore function and mobility of lost limb.

- Multitude of lower limb devices exist with varying levels of function.

- Control of devices is currently the limiting factor for high functioning devices.
Prosthesis Control

• Control requires communication between the user and device

• Current devices have control that can be difficult in daily use
 – Require direct user input via gestures, buttons, apps, etc

• Seamless and robust control schemes are needed
 – Mode identification and volitional

• Lower limb control requires maximum safety
Electromyography

• Control signals from the muscles are ideal to provide control communication
 – Electromyography (EMG) can detect electrical signals from muscle contraction

• Surface EMG (sEMG) takes input from user
 – IMU, Load Cells, Pressure sensors are reactive

• sEMG signals are prone to variance, not robust for control
 – Motion artifact, impedance, daily variation

• Standard sEMG uses a single signal from each muscle group

• HDsEMG can record an array of signals
Hypothesis and Objectives

- HDsEMG can be used to provide more robust control signals for lower limb prostheses compared to Standard sEMG

Specifically
- HDsEMG will provide higher quality signals
- HDsEMG will allow for signal compensation due to dislocation
- HDsEMG will provide higher accuracy with Machine Learning to predict activity and intent
Methods

• Human Experimental Protocol
 – 7 Control Participants
 – sEMG on two knee extensors + flexors

• Sensors in two locations
 – Optimal and 1 cm displaced distally

• Activities of daily living
 – Walking, turning, sit-to-stand, stand-to-sit, stairs, ramp, squats

ADLs: Activities of daily living

Extensors: Rectus Femoris, Vastus Lateralis

Flexors: Semitendinosus, Bicep Femoris
Signal Quality Measures

• Signal Quality
 – Signal to Noise Ratio (SNR): How clean is the signal

• Signal Strength
 – Root-Mean Square (RMS): How powerful

• Signals Tested
 – Single Standard sEMG
 – Single HDsEMG with highest SNR

(Sinderby, 1995)
Signal Quality Results

• Signal to Noise Ratio (SNR)
 – Standard sEMG = 5.0 ± 2.0 dB
 – HDsEMG = 12.6 ± 2.0 dB
 – Anything higher than 10 dB = clean (Sinderby, 1995)

• Signal Strength (RMS)
 – Standard sEMG = 0.039 ± 0.015
 – HDsEMG = 0.019 ± 0.011
Data was split into Training and Testing (70/30). A moving average filter was applied to reduce noise. Features constructed (~700):

- **Time**: Absolute Value, Slope Sign Change, Mean, etc.
- **Frequency**: Mean/Median Freq, Mean/Total Power, et.
- **Hybrid**: Combinations of Time + Frequency

Window was set to 480 samples with overlap of 470 samples, learning rate, hidden layer size, and corresponded with an average stride time.

Extremely Randomized Tree is a form ofDecision Tree used to determine the effectiveness of varying Features.

HD contains 16x the data, making analysis of multiple models difficult.

Final models were compared via 3-fold cross-validation. McNamar Tests indicated significance between models.
Results

Outcomes from Single Subject

<table>
<thead>
<tr>
<th>Sensor Placement</th>
<th>SDsEMG</th>
<th>HDsEMG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimal</td>
<td>Displaced</td>
</tr>
<tr>
<td>Accuracy</td>
<td>68%</td>
<td>70%</td>
</tr>
<tr>
<td>Sample Count</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Final Model</td>
<td>Random Forest</td>
<td>Auto-SKLearn</td>
</tr>
</tbody>
</table>

- **Accuracy**$= \frac{\text{# Correct Classifications}}{\text{Total # Windows Classified}}$
- Sample Count is the number of Windows for each data set
- Final Model is the Classifier chosen
Significance and Conclusion

- Quality and Strength
 - HDsEMG is higher quality with lower strength than SDsEMG

- Machine Learning
 - Accuracy for predicting activity is currently being evaluated
 - Single subject shows little change in accuracy

- More work is needed to determine optimal method for utilizing HDsEMG content
Questions?

Thank you to Mojtaba Mohasel and Fred Christensen. This work represents the goals of their graduate work at MSU.
References:

1) Riaz et al., Biological procedures online 8, no. 1 (2006);
2) Ahkami et al, IEEE, 2022;
3) Mohasel & Pew, 45th Meeting ASB, 2021
4) Phyniomark et al., Expert systems with applications 39, no. 8 (2012)
6) Bangaru et al, Automation in Construction 126 (2021)
7) Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015)
8) Vijayvargiya et al" Biomedical Engineering Letters 1-16 (2022)
9) Supuk et al, Sensors 14, no. 5 (2014)