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Limb Loss

* Limb loss is a major form of disability currently affecting
2 million Americans, with 159,000 new lower limb
amputees each year

* Rehabilitation goal is to restore function and mobility of
lost limb

 Multitude of lower limb devices exist with varying
levels of function

* Control of devices is currently the limiting factor for
high functioning devices
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Prosthesis Control

e Control requires communication
between the user and device

e Current devices have control that can
be difficult in daily use

— Require direct user input via gestures,
buttons, apps, etc

e Seamless and robust control
schemes are needed

— Mode identification and volitional

* Lower limb control requires
maximum safety

Todd Kuiken
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Electromyography

* Control signals from the muscles are ideal to provide
control communication

—  Electromyography (EMG) can detect electrical signals from muscle
contraction

* Surface EMG (sEMG) takes input from user

— Zero lag, direct response (parri, 2017)
— IMU, Load Cells, Pressure sensors are reactive

 sEMG signals are prone to variance, not robust for control
— Motion artifact, impedance, daily variation

e Standard sEMG uses a single signal from each muscle
group

« HDsSEMG can record an array of signals
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(Delsys, 2008)

Standard sEMG

Standard bi-polar sEMG sensor (Top)
HDsEMG array (Bottom).
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Hypothesis and Objectives

e HDSEMG can be used to provide more robust
control signals for lower limb prostheses
compared to Standard sEMG

Specifically
* HDSEMG will provide higher quality signals

* HDSEMG will allow for signal compensation due to
dislocation

* HDSEMG will provide higher accuracy with
Machine Learning to predict activity and intent
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Methods

* Human Experimental Protocol
— 7 Control Participants
— SsEMG on two knee extensors + flexors

e Sensors in two locations
— Optimal and 1 cm displaced distally

* Activities of daily living e poer
— Walking) tu rning) Sit_tO_Sta nd) Flexors: Semitendinosus, Bicep Femoris.

stand-to-sit, stairs, ramp, squats

Adjust SEMG
Placement

Adjust SEMG
Placement

\ 4
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Initial Setup ADLs Placement

ADLs

ADLs

ADLs

[ Consent+ Adjust sEMG>

Done ]
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Signal Quality Measures

 Signal Quality
— Signal to Noise Ratio (SNR): How clean is the signal

* Signal Strength
— Root-Mean Square (RMS): How powerful

* Signals Tested
— Single Standard sEMG
— Single HDSEMG with highest SNR

(Sinderby, 1995)
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Signal Quality Results

* Signal to Noise Ratio (SNR)
— Standard sEMG =5.0+2.0dB
— HDSEMG =12.6+2.0dB
— Anything higher than 10 dB = clean siderby, 1ss5)

* Signal Strength (RMS)
— Standard sEMG =0.039 + 0.015
— HDSEMG =0.019 £ 0.011
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Machine Learning Data

Window was set to 48@gamm|KemahType,

Data was sphtrivdoifgainig ge b festivigSPARaR &/ LR IRSRENINg Rate, Hidden
Corresponded with aleyagemeide time

Feature

Filtering

N Feature Hyperparameter
. size & : YPETP . Export model
construction selection tuning
overlap

Time domain
m Extremely Randomized Tree is alform ¢
Decision Tree used to determine
m effectiveness of varying Feat

Features constructed (~700)

HD contains 16x the data, making
* Time: Absolute Value, Slope $iggl{diangenMeg gisdels difficult vote of 16
* Frequency: Mean/Median Freq, Mean/Total Power, et.
* Hybrid: Combinations of Time + Frequency

Final models were compared 3-fold cross-validation
McNamar Tests indicated significance between models
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Results

Outcomes from Single Subject

SDSEMG HDsSEMG
Sensor Placement Optimal Displaced Optimal Displaced
Accuracy 68% 70% 67% 62%
Sample Count 37 37 33 26
Linear Linear
Final Model Random Forest Auto-SKLearn Discriminant Discriminant
Analysis Analysis

# Correct Classifications
Total # Windows Classified
* Sample Count is the number of Windows for each data set

* Final Model is the Classifier chosen

* Accuracy=
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Significance and Conclusion

e Quality and Strength
 HDsSEMG is higher quality with lower strength than SDsEMG

* Machine Learning
e Accuracy for predicting activity is currently being evaluated
e Single subject shows little change in accuracy

 More work is needed to determine optimal method for utilizing HDSEMG
content
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Questions?

Thank you to Mojtaba Mohasel and Fred Christensen.
This work represents the goals of their graduate work at MSU

{* MONTANA e

STATE UNIVERSITY




References:

1) Riaz et al., Biological procedures online 8, no. 1 (2006);

2) Ahkami et al, IEEE, 2022;

3) Mohasel & Pew, 45th Meeting ASB, 2021

4) Phyniomark et al., Expert systems with applications 39, no. 8 (2012)

5) Geurtz et al., Machine learning 63, no. 1 (2006)

6) Bangaru et al, Automation in Construction 126 (2021)

7) Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015)
8) Vijayvargiya et al" Biomedical Engineering Letters 1-16 (2022)

9) Supuk et al, Sensors 14, no. 5 (2014)

{* MONTANA i s

STATE UNIVERSITY




