Enhanced Control for a Lower Limb Prosthesis using High- Density Surface Electromyography

Mojtaba Mohasel¹, Corey Pew¹ ¹Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT Email:<u>Corey.Pew@montana.edu</u>

Limb Loss

- Limb loss is a major form of disability currently affecting 2 million Americans, with 159,000 new lower limb amputees each year
- Rehabilitation goal is to restore function and mobility of lost limb
- Multitude of lower limb devices exist with varying levels of function
- Control of devices is currently the limiting factor for high functioning devices

Prosthesis Control

- Control requires communication between the user and device
- Current devices have control that can be difficult in daily use
 - Require direct user input via gestures, buttons, apps, etc
- Seamless and robust control schemes are needed
 - Mode identification and volitional
- Lower limb control requires maximum safety

Todd Kuiken https://www.wired.com/images_blogs/design/2013/10/leg1.jpg

Electromyography

- Control signals from the muscles are ideal to provide control communication
 - Electromyography (EMG) can detect electrical signals from muscle contraction
- Surface EMG (sEMG) takes input from user
 - Zero lag, direct response (Parri, 2017)
 - IMU, Load Cells, Pressure sensors are reactive
- sEMG signals are prone to variance, not robust for control
 - Motion artifact, impedance, daily variation
- Standard sEMG uses a single signal from each muscle group
- HDsEMG can record an array of signals

(Delsys, 2008)

Standard bi-polar sEMG sensor (Top)

HDsEMG array (Bottom).

Hypothesis and Objectives

 HDsEMG can be used to provide more robust control signals for lower limb prostheses compared to Standard sEMG

Specifically

- HDsEMG will provide higher quality signals
- HDsEMG will allow for signal compensation due to dislocation
- HDsEMG will provide higher accuracy with Machine Learning to predict activity and intent

Methods

- Human Experimental Protocol
 - 7 Control Participants
 - sEMG on two knee extensors + flexors
- Sensors in two locations
 - Optimal and 1 cm displaced distally
- Activities of daily living
 - Walking, turning, sit-to-stand, stand-to-sit, stairs, ramp, squats

Anterior Posterior
Extensors: Rectus Femoris. Vastus Lateralis

Flexors: Semitendinosus, Bicep Femoris.

Signal Quality Measures

- Signal Quality
 - Signal to Noise Ratio (SNR): How clean is the signal
- Signal Strength
 - Root-Mean Square (RMS): How powerful
- Signals Tested
 - Single Standard sEMG
 - Single HDsEMG with highest SNR

(Sinderby, 1995)

Signal Quality Results

- Signal to Noise Ratio (SNR)
 - Standard sEMG = $5.0 \pm 2.0 \text{ dB}$
 - HDsEMG = 12.6 ± 2.0 dB
 - Anything higher than 10 dB = clean (Sinderby, 1995)
- Signal Strength (RMS)
 - Standard sEMG = 0.039 ± 0.015
 - HDsEMG = 0.019 ± 0.011

Machine Learning Data

Window was set to 480 mmples with Type,

Data was splatmoving anving gendiltesting (applied) to reduce hoise to be concerning Rate, Hidden Corresponded with a vayage ide time

Features constructed (~700) HD contains 16x the data, making

- Time: Absolute Value, Slope Sigal ସେଥିରେ ଅନ୍ତର୍ଥନା ମହାର କାର୍ଡ କାର୍ତ କାର୍ କା
- Frequency: Mean/Median Freq, Mean/Total Power, et.
- Hybrid: Combinations of Time + Frequency
 Final models were compared 3-fold cross-validation
 McNamar Tests indicated significance between models

vote of 16

LDA

AdaBoost

MLP

LDA

Results

	SDsEMG		HDsEMG	
Sensor Placement	Optimal	Displaced	Optimal	Displaced
Accuracy	68%	70%	67%	62%
Sample Count	37	37	33	26
Final Model	Random Forest	Auto-SKLearn	Linear Discriminant Analysis	Linear Discriminant Analysis

Outcomes from Single Subject

- Accuracy= $\frac{\# Correct Classifications}{Total \# Windows Classified}$
- Sample Count is the number of Windows for each data set ٠
- Final Model is the Classifier chosen •

٠

Significance and Conclusion

- Quality and Strength
 - HDsEMG is higher quality with lower strength than SDsEMG
- Machine Learning
 - Accuracy for predicting activity is currently being evaluated
 - Single subject shows little change in accuracy
- More work is needed to determine optimal method for utilizing HDsEMG content

Questions?

Thank you to Mojtaba Mohasel and Fred Christensen. This work represents the goals of their graduate work at MSU

References:

- 1) Riaz et al., Biological procedures online 8, no. 1 (2006);
- **2)** Ahkami et al, IEEE, 2022;
- 3) Mohasel & Pew, 45th Meeting ASB, 2021
- 4) Phyniomark et al., Expert systems with applications 39, no. 8 (2012)
- 5) Geurtz et al., Machine learning 63, no. 1 (2006)
- 6) Bangaru et al, Automation in Construction 126 (2021)
- 7) Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015)
- 8) Vijayvargiya et al" Biomedical Engineering Letters 1-16 (2022)
- 9) Supuk et al, Sensors 14, no. 5 (2014)

