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PURPOSE/BACKGROUND 
Surface electromyography (sEMG) sensors are able to detect the small electrical signals of muscle contractions through the 
skin. These can be used to help determine motion intent for clinical/biomedical applications [1]. While sEMG has seen wide 
application in upper limb prosthetic devices there has been little clinical implementation for lower limbs [2]. This is because 
sEMG signals can be unreliable during daily activity and for lower limb devices even small errors can cause injurious falls. 
Newer, high-density (HD) sEMG sensor have recently become available that have the potential to improve the reliability of 
sEMG as a control signal for lower limb prostheses. The objective of this research was to compare Standard (SD) and HD 
sEMG signals using intent recognition with machine learning algorithms [3] and determine if HDsEMG had the potential for 
improved prosthesis control.  

MATERIALS & METHODS 

Seven participants were recruited for an experimental study to relate motion of the lower limbs to varying sEMG inputs. 
Participants performed activities of daily living (ADL) including stair ascent/descent, straight walking, ramp ascent/descent, 
left/right turning, and squats. Placement of sEMG sensors is shown in Figure 1. Sensors were placed in both optimal 
locations and 1 cm displaced distally to simulate the effects of socket movement. Both SD and HD sEMG sensors were 
placed in all configurations. Data, labeled by activity was then associated to the varying sEMG to assess different machine 
learning classifiers to determine if classification of activity varied by sensor type and position. First, several time domain and 
frequency domain features which were extracted which included: Integrated EMG, modified mean absolute value, simple 
square integral, variance, absolute value of the 3rd, 4th, and 5th temporal moment, root mean square, average amplitude 
change, difference absolute standard deviation value, zero crossing, myopulse percentage rate, Wilson amplitude, slope sign 
change, mean absolute value slope, Autoregressive coefficients, cepstral coefficient, mean frequency, median frequency, 
peak frequency, mean power, total power, the 1st, 2nd, and 3rd Spectral moments, frequency ratio, and variance of central 
frequency [4]. Initial results indicated that time domain feature group attained highest accuracy. In addition, a randomized 
tree was used to further refine feature selection and determine the most appropriate feature set [5].Window size for feature 
was set to 480 samples, equal to the average stride time for the participant with an overlap of 470 samples. Varying 
classifiers were tested for their overall accuracy to identify activity type from sEMG signals alone. This included Random 
Forest, Support Vector Machine, adaboost, LDA, MLP, and autosklearn [6,7] with hyperparameters tuned via random 
search. HDsEMG sensor data contained information from 32 electrodes (16 for the extensor and 16 for the flexor muscle) as 
compared to single input from SDsEMG. To accommodate the varying data electrodes were paired together and 16 different 
models were trained to determine classifications from each data pair. Then a majority voting is used to determine the final a 
prediction.  

RESULTS 

Data collection has been completed, but data analysis is ongoing. Table 1 provides results for a single, representative.  
 
                                   Table 1:Classification report for sEMG and HDEMG data for subject3 in unseen data 
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DISCUSSION/CONCLUSION 

Accuracy for SDsEMG data was slightly higher than the for HDsEMG data. One reason may be the volume of the dataset for 
training models. Number of samples in the Test Data (which is 30 percent of total data) indicates that the models were 
trained with more samples therefore they could attain higher accuracy. In general, we expect to get higher accuracy when the 
sensor placement is in its optimal position. We can see that this is the case for HD data however for SD data the displaced 
sensor attained the accuracy which is similar (a little higher than) to the optimal sensor placement trial, a Result that we hope 
has more clarity as we process data from other individuals.  
 
In this research we developed two pipelines that automatically perform classification for SDsEMG and HDsEMG data. 
While other works combine different sensors such as IMU, Gyroscope, EMG to perform classification, this research only 
focused on the contribution of EMG data. Another challenge of this research was the number of classes for prediction (13 
different activities) which is greater than the average number of classes (5 activities) that models in the literature are 
developed for classification.  
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