PRESENTING AUTHOR'S NAME & RESEARCH TITLE

Jingchun Chen, MD, PhD

Genetic impact of COVID-19 infection and severity on Alzheimer's disease

PURPOSE/BACKGROUND

The COVID-19 pandemic, caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted many facets of our life, including neurodegenerative disorders such as Alzheimer's disease (AD). Notably, AD has emerged as a key comorbidity of COVID-19 infection, and the aging population is highly susceptible to COVID-19 infection with higher death rate. Leveraging large publicly available large genome-wide association study (GWAS) data, this study examined the overlapping genetic liability between AD and COVID-19 disease. Our goal is to better understand the genetic impact of COVID-19 on AD and discover new strategies for better prevention and treatments.

MATERIALS & METHODS

The COVID-19 GWASs from the European population (HGI7_Eur released on 04/08/2022) were downloaded from the COVID-19 Host Genetics Initiative website. Three categories of COVID-19 phenotypes vs. regular population were included in this study: 1) critically ill cases of COVID-19 (A2, case/ctrl = 13,769/1,072,442); 2) hospitalization due to moderate or severe COVID-19 (B2, case/ctrl = 32,519/2,062,805); 3) COVID-19 susceptibility with all cases (C2, case/ctrl = 2,475,240/12,597,856). AD genotyping datasets included the NIA/LOAD cohort and the Multi-Site Collaborative Study for Genotype-Phenotype Associations in Alzheimer's Disease (GenADA) Study (total case/ctrl = 3,119/3,023). In this study, we conducted polygenic risk score (PRS) analyses (PRSice v2.3.5) at multiple GWAS *P*-value thresholds (P_{T} : 5x10⁻⁸, 1x10⁻⁵, 1x10⁻¹, 1.0) and "best-fit" GWAS P_{T} ranging from 5x10⁻⁸ to 1 with an incremental interval of 0.00005. Significant correlation was determined when the associated *P*-val < 0.017(0.05/3) with multiple test correction. We also rescaled PRSs [-1,1] and conducted logistic regression analyses to compare the odds ratios and re-evaluate the association with adjustment for other covariates, such as age, sex, and *APOE* genotyping (rs429358 and rs7412).

RESULTS

We found significant positive correlations between AD diagnosis and genetic risk for different phenotypes of COVID-19. As seen in **Table 1**, AD was significantly associated with COVID-19 infection (P = 7.43E-05, coeff. = 1928.98), critical COVID-19 (P = 0.00162, coeff. = 274.59), and hospitalization (P = 0.01523, coeff. = 112.47). Adjusted for age, sex, and *APOE* genotyping, AD was still significantly associated with COVID-19 infection [*P-adj.* = 1.29E-06, OR(CI95%)-adj. = 1.878(1.457-2.428)], critical COVID-19 [*P-adj.* = 0.00056, OR(CI95%)-adj. = 1.496(1.191-1.882)], and marginal association with hospitalization [*P-adj.* = 0.04172, OR(CI95%)-adj. = 1.265(1.009-1.586)]. Multiple positive associations were also found as significant between AD diagnosis and genetic risk for COVID-19 infection at different GWAS P_T (Fig. 1.)

Table 1. COVID-19 Infection and severity are highly associated with AD diagnosis from "best-fit" PRSice-2 model

phenotypes	Case	Ctrl	total	P _T	R ²	Coeff.	SE	SNP#	OR (CI 95%)	P-val	OR(Cl95%)-adj.	P-adj.
Critical Cond.(A2)	13769	1072442	1086211	0.0039	0.002	274.6	87.1	8553	1.395(1.134-1.716)	0.00162	1.496(1.191-1.882)	0.00056
Hospitalization (B2)	32519	2062805	2095324	0.0003	0.001	112.5	46.3	1275	1.288(1.050-1.581)	0.01523	1.265(1.009-1.586)	0.04172
infection (C2)	122616	2475240	2597856	0.0432	0.003	1929.0	486.8	59061	1.595(1.268-2.013)	7.43E-05	1.878(1.457-2.428)	1.29E-06

Note: Case, control (Ctrl), and total are the sample size included in the most recent COVID-19 GWASs from HGI7 for European population; P_T : *P*-value threshold from GWAS *P*-value; R²: how much variance explained by the model; Coeff.: coefficient; SE: standard error; SNP#: how many number of SNPs are included in the "best-fit" model; OR: odds ratio from logistic regression analyses with rescaled PRSs [-1 1] without any adjustment; CI: confident interval without any adjustment; *P*-val: association *P*-value between PRSs and AD diagnosis without any adjustment; *P*-adj.: association *P*-value between PRSs and AD diagnosis without any adjustment; *P*-adj.: odds ratio and 95% confident interval with adjustment for age, sex, and *APOE* genotyping (rs429358 and rs7412); *O*R(CI95%)-adj.: odds ratio and 95% confident interval with adjustment for age, sex, and *APOE* genotyping (rs429358 and rs7412). *P*-val in bold represents statistically significant.

X-axis: P value threshold. Y-axis: PRS model fit R² indicates how much variance explained by the model. Color indication gradient is based on a -log model P-value.

DISCUSSION/CONCLUSION

Using the polygenic risk score approach, we identify a strong genetic correlation between AD diagnosis and genetic risks for COVID-19 (infection, critical illness, and hospitalization), suggesting that COVID-19 patients from different clinical manifests all have higher genetic risk to develop AD. With the ongoing outbreak of COVID-19 and the high vulnerability of AD from COVID-19 infection, our findings highlight the importance offering preventative measures to patients with COVID-19 and provide a genetic base for understanding the neurological impact of COVID-19.